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It is well known that some quantifiers in questions allow for pair-list answers. An intuitive
way to paraphrase the meaning of such a question, so that a pair-list answer is expected, is
to let the quantifier take wide scope (1).

(1)  What did every student read? ~ For every student x, what did = read?

Alice read Martin Chuzzlewit, Bob read Nicholas Nickleby, and Carol read Oliver Tuwist.

However, as is also well known, and experimentally shown by van Gessel & Cremers
(2020), for a variety of quantifiers, such wide-scope readings (henceforth @) > 7 readings) in
matrix questions are either marked (but still somewhat acceptable) or even non-existent (2).

(2)  What did two/most/fewer than three/no students read?
For ?two/7most/??fewer than three/#no students, what did they read?

In this paper, we extend inquisitive semantics with Charlow’s (2020) theory of scope-taking
for alternatives to integrate different notions of alternatives used in analyses of questions and
indefinites in a principled way, and account for the gradient acceptability shown in (1) and
(2), i.e., the @ >7 reading is (i) perfectly available for every, (ii) non-existent for no, (iii)
possible but marked for numerals and most, and less acceptable for fewer than three.

Basic setup In inquisitive semantics, clauses denote a non-empty, downward-closed set of
classical propositions, henceforth called a Proposition (type T'). The informative content of a
Proposition P is defined as the union of all the classical propositions in it, i.e., info(P) = | J P.
A simple declarative sentence such as (3a) denotes a Proposition containing its classical
denotation read(o)(c) and all its subsets (we define S*, the downward closure of a set S,
as {p | 3s[s € S Ap C s]}). The negation of a Proposition P is defined as the Proposition
containing the classical negation of info(P) and all its subsets (3b). The Proposition denoted
by a question represents its resolution conditions, i.e., classical propositions that would resolve
the issue raised by the question (3¢, 3d). Compositionally, an interrogative complementizer
introduces an operator (?), which (i) ensures inquisitiveness by mapping a Proposition P
to P Unot(P) if P only has one maximal element (3c) and otherwise leaving P unchanged,
and (ii) presupposes the informative content of the resulting Proposition (notationally,
presuppositions follow the ®). The presupposition of a polar question is trivially satisfied (3c).
In a wh-question (3d), the wh-word what takes a function from individuals to Propositions,
applies this function to each individual in the relevant domain, and returns the union of all
the resulting Propositions, and finally (7) further adds an existential presupposition.

(3)a. [Carol read Oliver Twist] = {read(o)(c)}* info([(3a)]) = read(o)(c)
b. [not] = not = AP.{—~info(P)}* not([[(3a)]) = {-read(o)(c)}*
c. [Did Carol read Oliver Twist?] = (?)([(3a)]) = {read(o)(c), ~-read(o)(c)}* e T
d. [What did Carol read?] [what] = AFer.(U,ep, F(2))

= (?)([what](Az.{read(z)(c)}})) = {read(m)(c), read(n)(c), read(o)(c)}* e (3z.read(x)(c))"

!Note that the Proposition also includes, e.g., read(m @ n)(c), but there is no need to explicitly list it
because read is distributive, i.e., read(m @ n)(c) C read(m)(c), and the Proposition is downward-closed.



Universal quantifier Universal quantifiers are analyzed using set intersection (just like
conjunctions), e.g., every student denotes AFer. (), gpudent(x) £'(%)- The @ >7 reading (1)
is derived by letting every student take wide scope (4). According to (4), any classical
proposition p that resolves the question is such that for every student y, there is some z such
that p entails that y read x. (We further assume that the presuppositions project universally.)

(4) [every student](A\y.{read(m)(y), read(n)(y), read(o)(y)}* e (Jz.read(z)(y)))

= {Pa Apo Ape | py € {read(m)(y), read(n)(y), read(o)(y)}*} ® (Vy3z.read(z)(y))
Negative quantifier When not takes scope above a wh-question such as (3d), the infor-
mative content will contradict the presupposition. Therefore, we can treat no student as
AF.r.[every student](not(F')) and straightforwardly account for its lack of ¢ > 7 readings.
Numerals and most We assume an adjectival analysis for numerals (bare or modified) and

most. On the one hand, they can take scope within the DP and be seen as a modifier of the
head noun and the DP denotes a set of pluralities that satisfy the modified head noun (5).

(5)  a. [Dsome two students]| = {z | students(z) A #x = 2}
b. [Dsome fewer than three students] = {x | students(z) A #x < 3}

¢. [Dsome most students] = {z | students(z) A #z > #(@y:““;e"“(y) y)}

To ensure that we are getting pair-list rather than cumulative answers, we define a
distributivity operator D as AFer.AZ. (),c atoms(z) £ () (parallel to every student, except that

the domain is the atoms of the plurality argument z), and apply it to the intended scope of
the DP (6). A DP in (5) takes scope over (6) according to Charlow’s (2020) % operator, which
effectively amounts to applying (6) pointwise to each element in the set denoted by the DP,
resulting in a set of Propositions, e.g., (7). We can then take the union of these Propositions
(which can be seen as a generalized form of existential closure) to obtain a single Proposition
P, i.e., any classical proposition that resolves at least one of the Propositions in (7) also
resolves P. Therefore ) > 7 readings for numerals and most are semantically derivable.

(6) D(At.[what did t read?])
= A2. (), Atoms(x) ir€ad(m)(y), read(n)(y), read (o) (y) }* o (Vy3z.read(z)(y))
(7) [What did two students read?] = [Dsome two students] x [(6)]
{ﬂyeAtomS(x){read(m)(y), read(n)(y),read(o)(y)}* e (Vy3z.read(z)(y)) | students(z) A #x = 2}

However, there are two reasons why such ) > 7 readings are not always easily accessible
and show a gradient. First, the union of (7) violates an independently motivated constraint on
question meanings. According to Hoeks & Roelofsen (2019), a question meaning is defective
if a maximal element is covered by a set of some other maximal elements, e.g. (8). This can
be shown to be the case for the union of (7), which explains why the @ > 7 reading is marked.

(8) # Does Ann speak French, does she speak German, or does she not speak German?

Second, numerals and most tend to scope out of the DP and additionally apply negation
to their scope to get a strengthened, upper-bounded reading. In particular, this strengthening
process is required for fewer than because the meaning would otherwise be too weak (Buccola
& Spector, 2016). However, as discussed above, negating a question would result in a
contradiction. These two reasons explain why ) > 7 readings for numerals and most are not
always easily accessible and why this is particularly so for fewer than three.
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